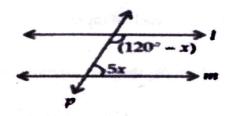
ST. JOHN'S HIGH SCHOOL **CLASS IX MATHEMATICS** HALF YEARLY EXAMINATION 2024

M M: 80

DURATION: 3 Hrs.

COLON: 3 Hrs	5.	M M	: 80
General Instruction	18:		
1. This Question Pa	per has 5 Sections A-E.		
2. Section A has 20	MCQs carrying 1 mark each		
3. Section B has 5 q	uestions carrying 02 marks e	ach.	
4. Section C has 6 q	uestions carrying 03 marks e	each.	
5. Section D has 4 q	uestions carrying 05 marks e	ach.	than the second
	ase based integrated units of		ach).
\$ 1.00 m		(
	SECTI	ON A	
	52011		
1. Given a ration	al number $\frac{-5}{9}$. This ration	nal number can also b	e known as
(a) a natural nu	mber (b) a whole num	ber (c) a fraction	(d) a real number
(u) u natura zu		(5) 11 11 11 11 11 11 11 11 11 11 11 11 11	Control of the state of the sta
2 Th. 1		2 + 2 × + 1) in	
2. The degree of	$polynomial p(x) = x + \sqrt{(x^2)}$		
(a) 2	(b) 1	(c) 0	(d) 3
3. The square roo	ot of which number is rati	onal	
	(b) 0.006	(c) 0.04	(d) 13
(a) 7	(b) 0.000	(k) 0.01	(5) 120
4. If the x-coordin	ate of a point is zero, then t	his point lies:	
(a) In II quadrant	t (b) In I quadrant	(c) On x-axis	(d) On y-axis
S. Harris			
5 A linear equation	n in two variables is of the f	form $ax + by + c = 0$, wh	nere
(a) $a \neq 0, b \neq 0$	$(b) a = 0 b \neq 0$	(c) $a \neq 0, b = 0$	(d) $a = 0, c = 0$
(a) a + 0,0 + 0	(b) $u = 0$, $v \neq 0$	(c) u + 0,0	
		- 2	
c mbo volue et	:6 (- 1) ! 6 of 4-3	$\pm 2v^2$ $4v \pm k$ is	
	if $(x-1)$ is a factor of $4x^3$	T JX - 4X T K, 15	(4) 3
(a) 1	(b) 2	(c) -3	(d) 3
7. What is the area	a of an equilateral triangle v	with side 2 cm?	
(a) $\sqrt{6}$ cm ²	(b) $\sqrt{3}$ cm ²	(c) $\sqrt{8cm^2}$	$(d) 4cm^2$
(a)	(b) v3cm	(6)	
	2 -		
8. If $x + y = 3$, x^2	$^2 + y^2 = 5$ then xy is		(1) 5
(a) 1	(b) 3	(e) 2	(d) 5
•			

0 0			
9. On divi	ding $6\sqrt{27}$ by $2\sqrt{3}$, we get		
(a) $3\sqrt{9}$	(b) 6	()	
	(9) 0	(c) 9	(d) none of these
10. The zer	ro of the		ione of these
THE ZEI	ro of the polynomial p(x)	=2x+5 is	
(a) 2			E
(a) 2	(b) 5	(c) $\frac{2}{5}$	(d) $\frac{-5}{2}$
44			(a) 2
11. Through	which of the following poi	nts the grant of	
(a)(1,1)	(b) (0, 1)	= 100, the graph of y = -1	k passes?
	(0) (0, 1)	(c)(-1,1)	(d) (2,2)
10 70			
12. The section	on formed by horizontal a	ld vertical lines det	nining the position of point in
a cartesian pl	ane is called:	d vertical lines determ	lining the position of point in
(a) Origin	(b) X-axis		Control 90%, Stant Service Control
		(c) Y-axis	(d) Quadrants
13. How many	V linear equations one and		_
	y linear equations are sati	Stred by $x = 2$ and $y = -$	-3?
(a) Only one			
(a) Only one	(b) Two	(c) Three	(d) infinitely many
14 If two same	Aug		(a) infinitely many
14. 11 two com	plementary angles are in	the ratio 13: 5, then th	e angles are.
(a) 13x°, 5x°	(b) 25°, 65°	(c) 65°, 25°	(d) (50, 250
			(d) 65°, 35°
15. If AABC is	s congruent to ADEF by	222	
(a) ∠C < ∠F	(b) (D)	555 congruence rule	, then:
(a) 20 \ ZI	(b) $\angle B < \angle E$ (c) $\angle A$	$A = \angle D$ only $(d) \angle A$	$A = \angle D, \angle B = \angle E, \angle C = \angle F$
17 7711			,
16. What is the	angle formed by a line?		
$(a) 90^{\circ}$	(b) 180°	(c) 270°	at a
	. ,	(c) 2/0°	(d) 360°
17. In two trian	ngles ABC and DEF, AB	= DF RC - DF	4.0
(a) $\triangle ABC \cong \triangle$	DEE (H) AADC : AE	- DE, DC - Dr and	AC = EF, then
(-) Shipe = A	$DEF \qquad (b) \Delta ABC \cong \Delta E$	$DF \qquad (c) \Delta ABC \cong A$	AFDE (d) none of these
19 In 4h			(a) none of these
10. In the given	figure, find the value of x		
(a) 40°			· ·
12.7	(b) 50°	(c) 60°	(d) 80°
	-	-	(1) 00
	₹D	20	
	1	0000	
	\ (x+	·20)°/	
		_/	
	(x+3)° X	X(x+7)°	
	Commence of the second		
	E	2 5	

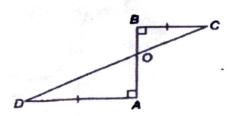

NOTE: In question number 19 and 20, a statement of ASSERTION(A) is followed by a statement of REASON(R). Choose the correct option.

19. Assertion (A): The point (-2, 0) lies on y -axis and (0, 4) on x -axis.

Reason(R): Every point on the x -axis has zero distance from x -axis and every point on the y -axis has zero distance from y -axis.

- (a) Both A and R are true, and R is the correct explanation of the assertion.
- (b) Both A and R are true, but R is not the correct explanation of the assertion.
- (c) A is true, but R is false.
- (d) A is false, but R is true.
- 20. Assertion (A): The value of x from the adjoining figure, if l | m is 15°

Reason(R): If two parallel lines are intersected by a transversal, then each pair of corresponding angles so formed is equal.

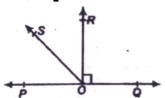

- (a) Both A and R are true, and R is the correct explanation of the assertion.
- (b) Both A and R are true, but R is not the correct explanation of the assertion.
- (c) A is true, but R is false.
- (d) A is false, but R is true.

SECTION B

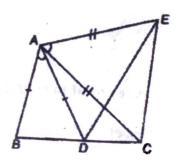
21. Check which of the following are solutions of the equation x - 2y = 4.

- (a)(0,2)
- (b) (4, 0)
- (22) AD and BC are equal perpendiculars to a line segment AB (see figure).

Show that CD bisects AB.

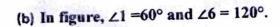


- 23) Find the value of $\sqrt{(3)^{-2}}$
- (24) Find the value of $249^2 248^2$.
- 25. Without plotting the points indicate the quadrant in which they will lie, if
- (i) ordinate is 5 and abscissa is 3
- (ii) abscissa is -5 and ordinate is -3
- (iii) abscissa is 5 and ordinate is 3
- (iv) ordinate is 5 and abscissa is 3

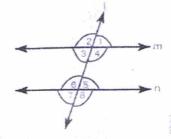

SECTION C

- 26. Express the following linear equations in the standard form and indicate the values of a, b and c in each case:
- (a) 5 = 2x
- (b) -2x + 3y = 6
- 27. An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.
- 28. Find three different irrational numbers between the rational numbers $\frac{2}{7}$ and $\frac{5}{9}$
- Find the values of a and b so that $(2x^3 + ax^2 + x + b)$ has (x + 2) and (2x 1) as factors.
- 30 In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that

$$\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$$

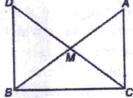


31. In the given figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.



SECTION D

32. (a) If two lines intersect, prove that the vertically opposite angles are equal.

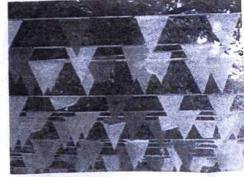


Show that lines m and n are parallel.

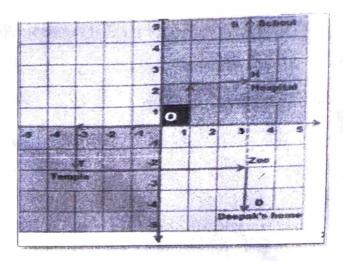
33. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see figure). Show that

- (i) $\triangle AMC \cong \triangle BMD$
- (ii) ∠DBC is a right angle
- (iii) △DBC ≅ △ACB

34. (a) Express 23.434343...... in p/q form, where p, q are integers and $q \neq 0$.

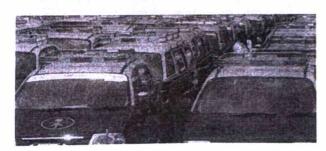

- (b) Evaluate: $(\sqrt{5} + \sqrt{2})^2 + (\sqrt{8} \sqrt{5})^2$
- 35. (a) Find the zeroes of the polynomial: $p(x) = (x-2)^2 (x+2)^2$
 - (b) Factorise: $a^3 8b^3 64c^3 24abc$

SECTION E


(Case Study Based Questions)

36. A craft mela is organized by Welfare Association to promote the art and culture for tribal people. Fairs and festivals are the custodians of our great cultural heritage. The pandal is to be decorated by using triangular flags around the field. Each flag has dimensions 25 cm, 25 cm and 22 cm.

- (a) What is the semi-perimeter of the flag?
- (b) What is the area of the flag? (Use $\sqrt{14=3.74}$ approx.)
- (c) If the rate of the cloth is ₹ 200 per m^2 , find the total cost of 300 flags.


37. In the given picture, one small square is of size 1 km *1 km. From the starting point O (0, 0) Deepak started to drive towards his home. He first drives 3km in left then he turned to his left and drove 2 km, there he found a temple. He worshipped there and drove 6km in the left direction, there is a zoo and from the zoo, he drives 2km on the right side, then he reached his home. From O Sanjay drove for his school, he drove 1km to his right then took a left turn and drives 2km then again took a right turn and drives 2 km. He found a hospital in the way. From Hospital he drove 3 km and finally reached his school.

- (a) What is common abscissa of school, Hospital, Zoo and Deepak's home?
- (b) Deepak drove in which quadrants?
- (c) Name the two places which are the mirror images of each other. Give the coordinates of each.

38. The taxi fare in a city is as follows: For the first kilometer, the fare is ₹ 8 and for the subsequent distance it is ₹ 5 per km.

Take the distance covered as x km and total fare as ₹ y

- (a) Write a linear equation for this information.
- (b) Write two solutions for the linear equation formed.
- (c) Represent the above situation graphically.